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Radial Basis Function Networks

A radial basis function network (RBFN) is a neural network
with a graph G = (U,C) that satisfies the following conditions

(i) Uin ∩ Uout = ∅,

(ii) C = (Uin × Uhidden) ∪ C ′, C ′ ⊆ (Uhidden × Uout)

The network input function of each hidden neuron is a distance function
of the input vector and the weight vector, that is,

∀u ∈ Uhidden : f
(u)
net (~wu, ~inu) = d(~wu, ~inu),

where d : IRn× IRn → IR+
0 is a function satisfying ∀~x, ~y, ~z ∈ IRn :

(i) d(~x, ~y) = 0 ⇔ ~x = ~y,

(ii) d(~x, ~y) = d(~y, ~x) (symmetry),

(iii) d(~x, ~z) ≤ d(~x, ~y) + d(~y, ~z) (triangle inequality).
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Distance Functions

Illustration of distance functions: Minkowski Family

dk(~x, ~y) =





n
∑

i=1

|xi − yi|
k





1
k

Well-known special cases from this family are:

k = 1 : Manhattan or city block distance,
k = 2 : Euclidean distance,
k → ∞ : maximum distance, that is, d∞(~x, ~y) = max n

i=1|xi − yi|.

k = 1 k = 2 k → ∞
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Radial Basis Function Networks

The network input function of the output neurons is the weighted sum of their inputs:

∀u ∈ Uout : f
(u)
net (~wu, ~inu) = ~w⊤

u
~inu =

∑

v∈pred (u)

wuv outv .

The activation function of each hidden neuron is a so-called radial function,
that is, a monotonically decreasing function

f : IR+
0 → [0, 1] with f (0) = 1 and lim

x→∞
f (x) = 0.

The activation function of each output neuron is a linear function, namely

f
(u)
act (netu, θu) = netu−θu.

(The linear activation function is important for the initialization.)
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Radial Activation Functions

rectangle function:

fact(net, σ) =

{

0, if net > σ,

1, otherwise.
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Radial Basis Function Networks: Examples

Radial basis function networks for the conjunction x1 ∧ x2
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Radial Basis Function Networks: Examples

Radial basis function networks for the biimplication x1 ↔ x2

Idea: logical decomposition

x1 ↔ x2 ≡ (x1 ∧ x2) ∨ ¬(x1 ∨ x2)
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Radial Basis Function Networks: Function Approximation
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Approximation of a function by
rectangular pulses, each of which
can be represented by a neuron of
an radial basis function network.
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Radial Basis Function Networks: Function Approximation
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A radial basis function network that computes the step function on the preceding slide
and the piecewise linear function on the next slide (depends on activation function).
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Radial Basis Function Networks: Function Approximation
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Approximation of a function by
triangular pulses, each of which
can be represented by a neuron of
an radial basis function network.
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Radial Basis Function Networks: Function Approximation
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Approximation of a function by Gaus-
sian functions with radius σ = 1. It is
w1 = 1, w2 = 3 and w3 = −2.
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Radial Basis Function Networks: Function Approximation

Radial basis function network for a sum of three Gaussian functions
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• The weights of the connections from the input neuron to the hidden neurons
determine the locations of the Gaussian functions.

• The weights of the connections from the hidden neurons to the output neuron
determine the height/direction (upward or downward) of the Gaussian functions.
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