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Evolutionary Strategies (ES)

• here: focus on numerical optimization
given: Function f : IRn → IR
wanted: minimum or maximum of f
Chromosomes: Vectors of real numbers
Mutation: adding a normal-distributed random vector r
each element ri ∈ r is a sample of a normal-distributed random
number with

• expected value 0 (independent of element index i) and
• variance σ2

i resp. standard deviation σi
• σ2

i (in)dependent of element index i and generation t
• Crossover: here, it’s not used.
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Selection
Strict elite principle:

• only the best individuals enter the next generation
• Definition:

µ – number of individuals in the parent generation
λ – number of offspring individuals that were created by
mutation

Two essential selection strategies:
• +-strategy (plus strategy, (µ + λ)-strategy)

selection works on (µ + λ) individuals and the best µ chromsomes
are selected for the next generation
(it often holds λ < µ)

• ,-strategy (comma strategy, (µ, λ)-strategy)
generates offspring of size λ > µ where the best µ chromosomes
are selected
(chromosomes of parent generation are lost)
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Selection
Example: special case f (1+1)-strategy

„Initial population“: x0 (randomly generated vector of real
numbers)
creating the next generation:

1. generate real random vector r t and compute x∗
t = xt + r t

2. use
xt+1 =

{
x∗

t , falls f (x∗
t ) ≥ f (x),

xt , sonst.

generate further generations until termination criterion is fulfilled
• relates to hill climbing

⇒ general +-strategy = parallel hill climbing, which is performed
simultaneously on several parts of Ω (whereas the most promising
µ paths are pursued)
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Evolutionary strategies

Does not only optimizes organisms but complete mechanisms of
evolution: reproduction- and mortality rate, life span, susceptibility to
mutation, mutation step width, speed of evolution etc.

adaptation of random vector’s variance (mutation step width)
• small variance ⇒ small changes of chromosomes ⇒ local search

(exploitation)
• high variance ⇒ big changes of chromosomes ⇒ global search

(exploration)
further approachs to adapt parameters:

• Choice of the number of genes which are changed
(Vektorelemente)

• Choice of λ representing the amount of offspring
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Global-Variance-Adaption
Chromosome independent variance

• Choose σ in such a way that the mean convergence rate is
(approximately) optimized
[Rechenberg, 1973] approach: determine an optimal σ for

• f1(x1, . . . , xn) = a + bx1 and
• f2(x1, . . . , xn) =

∑n
i=1 x2

i ,
by determining the probabilities for a successful (that is,
improving) mutation.

• Results of this empirical study
• for f1: p1 ≈ 0.184 und
• for f2: p2 ≈ 0.270

1
5-success rule

• heuristically inferred
• under the plus strategy the mutation step size is appropriate if

approximately 1
5 of the offspring are better than the parents

Prof. R. Kruse, P. Held EA – ES and Behavioural Simulation 13.05.2013 5 / 34



Global-Variance-Adaption
Adaptation of the variance σ2 based on the 1

5 -success rule:
• if more than 1

5 of the children are better than the parents, the
variance should be increased

σ′ = σ · α, α > 1

• if less than 1
5 of the children are better than the parents, the

variance should be reduced:

σ′ = σ/α

• for larger populations the 1
5 -success rule is sometimes too

optimistic
• in analogy to simulated annealing: one may define a function

that increases the threshold over time
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Global-Variance-Adaption

Algorithm 1 Adaptive-Adaption
Input: Standard deviation σ, success rate ps , threshold θ = 1

5 , modifi-
cation factor α > 1

Output: adapted standard deviation σ
1: if ps > θ {
2: return α · σ
3: }
4: if ps < θ {
5: return σ/α
6: }
7: return σ
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Algorithm 2 ES-Adaptiv
Input: function F , population size µ, number of offspring λ, modification frequency k
1: t ← 0
2: σ ← value for the initial step size
3: s ← 0
4: P(t) ← create a population with µ individuals
5: evaluate P(t) with F
6: while termination criterion is not fulfilled {
7: P′ ← ∅ /* for plus strategy P′ ← P(t) */
8: for i = 1, . . . , λ {
9: A ← select random parent uniformly from P(t)
10: B ← Gaussian-Mutation(A) with σ
11: evaluate B with F
12: if B.F # A.F {
13: s ← s + 1
14: }
15: P′ ← P′ ∪ {B}
16: }
17: t ← t + 1
18: P(t) ← Selection in P′ with Best-Selection
19: if mod (t, k) = 0 {
20: σ ← Adaptive-Adaption(σ, s

k·λ )

21: s ← 0
22: }
23: }
24: return best individual in P(t)
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Local Variance Adaptation
chromosome-specific variances

Variance/Standard deviation is used as additional genetic
information:

• a variance for all vector entries
• an individual variance for every entry of the vector (double vector

length)
Note: additional entries of the vector for variances have no direct
influence on the fitness of the chromosome
Expectation: chromosomes with „bad“ variances, that is

• too small: chromosomes are growing up too slowly or
• too big: chromosomes clearly diverge from its parents

generate comparatively more „bad“ offspring
its genes (and so the variances) become extinct
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Local Variance Adaptation
element-specific mutation step widths (standard deviation) are
mutated with the following scheme:

σ′
i = σi · exp(r1 · N(0, 1) + r2 · Ni(0, 1)).

N(0, 1): one normal distributed number per chromosome
Ni(0, 1): one normal distributed number per gene
recommended values for r1, r2 [Bäck and Schwefel, 1993]

r1 =
1√
2n

, r2 =
1

√
2√n

,

where n is number of vector entries, or [Nissen, 1997]

r1 = 0.1, r2 = 0.2

often: lower bound for mutation step widths
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Algorithm 3 ES-Selbstadaptiv
Input: function F , population size µ, number of offspring λ
1: t ← 0
2: P(t) ← create population with µ individuals
3: evaluate P(t) with F
4: while termination criterion not fulfilled {
5: P′ ← ∅ /* for plus selection P′ ← P(t) */
6: for i = 1, . . . , λ {
7: A ← select parent uniformly random from P(t)
8: B ← Self-adaptive-Gaussian-Mutation(A)
9: P′ ← P′ ∪ {B}

10: }
11: evaluate P′ with F
12: t ← t + 1
13: P(t) ← select best µ individuals from P′

14: }
15: return best individual in P(t)
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Extension of the local variance adaptation

• standard form of the local variance adaptation: variances of the
different vector entries are independent of each other
(formal: Covariance matrix is a diagonal matrix)

• for variants of chromosomes favored in certain directions:
adaptation with single variance if and only if orthogonal directions
Example: create variants of chromosomes with two genes favored
in the direction of the principle diagonal, that is (1, 1)
not describable with single variances
Solution: use covarianz matrix with a high covariance, e.g.

Σ =

(
1 0.9

0.9 1

)
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Covariance and Correlation

no
correlation

weak
positive
correlation

strong
positive
correlation

strong
negative
correlation
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Cholesky-Decomposition
S symmetric positive definite matrix (d.h. covariance matrix)

• symmetric: ∀1 ≤ i , j ≤ m : sij = sji
• positive definite: for all m-dim. Vectors v )= 0, it holds vT Sv > 0

Cholesky-Decomposition: Computation of the „Square-Root“ of S
Compute left lower triangle matrix L so that LLT = S
(LT is transpose of the matrix L)

lii =

(

sii −
i−1∑

k=1
l2
ik

) 1
2

lji =
1
lii

(

sij −
i−1∑

k=1
lik ljk

)

, j = i + 1, i + 2, . . . , m
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Cholesky-Decomposition
Special case: two dimensions

Covariance matrix
Σ =

(
σ2

x σxy

σxy σ2
y

)

Cholesky-Decomposition

L =




σx 0
σxy
σx

1
σx

√
σ2xσ2y − σ2xy





unit
circle

1

2

3

4

Mapping with L

12

3 4
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Eigenvalue Decomposition

also yields to analogue of the standard deviation
more expensive to compute than Cholesky-Decomposition
S symmetric positive definite matrix (d.h. covariance matrix)

S = R diag(λ1, . . . , λm) R−1,

whereas λj , j = 1, . . . , m are Eigenvalues of S and columns R are
(normalised) Eigenvectors of S

• Eigenvalues λj , j = 1, . . . , m of S are positive and Eigenvectors
of S are orthonormal (⇒ R−1 = RT )

S = TTT with

T = R diag
(√

λ1, . . . ,
√

λm
)
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Eigenvalue Decomposition
Special case: Two dimensions

Covariance matrix
Σ =

(
σ2

x σxy

σxy σ2
y

)

Eigenvalue Decomposition
(s = sin φ, c = cos φ, φ = 1

2 arctan σxy
σ2y −σ2x

)

T =

( c s
−s c

)(
σ1 0
0 σ2

)

,
σ1 =

√
c2σ2x + s2σ2y − 2scσxy ,

σ2 =
√

s2σ2x + c2σ2y + 2scσxy .

unit
circle

1

2

3

4

Mapping with T

1
2

3
4

σ1

σ2
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Variance adaptation
in general: describe correlated mutation with n variances and
n(n−1)

2 rotation angles
use covariance matrix

Σ =




n∏

i=1

n∏

k=i+1
Rik(ϕik)



 diag(σ2
1 , . . . , σ2

n)




n∏

i=1

n∏

k=i+1
Rik(ϕik)




−1

wobei

Rik(ϕik) =





1
. . .

1
cos ϕ sin ϕ

1
. . .

1
− sin ϕ cos ϕ

1
. . .

1




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Variance adaptation

Covariance matrix Σ is generally chromsome-specific
(then, chromosome has n + n(n+1)

2 genes)
Mutation of covariances on rotation angles and not directly on
the matrix entries:

ϕ′
ik = ϕik + r · N(0, 1)

with r ≈ 0.0873 (≈ 5◦)
N(0, 1) in every step a new normal distributed number is
generated
disadvantages of the correlated mutation:

• notable more parameters have to be adapted
• variances and rotation angles have no direct influence on the

fitness function; its adaptation is performed rather casually
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Crossover/Recombination
random selection of components of the parents:

(x1, x2, x3, . . . , xn−1, xn)

(y1, y2, y3, . . . , yn−1, yn)
⇒ (x1, y2, y3, . . . , xn−1, yn)

corresponds to uniform crossover
(basically, 1-, 2- or n-point crossover can be used, too)
Averaging (blending, intermediäry recombination):

(x1, . . . , xn)

(y1, . . . , yn)
⇒ 1

2(x1 + y1, . . . , xn + yn)

Attention: when using blending method, danger of Jenkins
Nightmare is on the spot

• total disappearance of any diversity in a population
• benefited by averaging since genes head on mid values
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Plus- versus Comma-Strategies
Advantage of the +-strategy:

• due to strict elite principle: only improvements
Disadvantages:

• risk of getting stuck in local optima
• for (µ + λ)-strategy with µ

λ ≥ „best probability for a successful
mutation“ (≈ 1

5) Chromosomes have a selection benefit, which
keep its variance σ2 as low as possible since not enough
mutations are performed to get a substantial improvement
(„Beinahe-Stagnation“)
common choice of the fraction of µ and λ approx. 1:7

if no improvement over further generations is recognizable, it is
temporary helpful to switch off to the ,-strategy to overcome local
minima (increases diversity in population)
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Evolutionary Algorithms for Behavioral
Simulation

before: EAs are used to solve (numerical or discrete) optimization
problems
now: using EAs to simulate behaviour(population dynamics) and
to find behavioural strategies
basis: game theory

• used to analyze social and economic situations
• rationale is to model agents and their actions as game moves in a

formally specified framework
• most important theoretical foundation of economics

General Approach:
• encoding the moves of an agent in an chromosome
• let agents interact with each other and evaluate their success
• agent reproduce or die due to their achieved success
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The prisoner’s dilemma
best-known and most thoroughly studied problem of the game theory
is the so-called prisoner’s dilemma(PD)

• 2 people robbed a bank and were arrested
• but the available circumstantial evidence is not sufficient for a

conviction because of the bank robbery
• There is, however, sufficient evidence for a conviction because of

a lesser criminal offense (say, illegal possession of firearms)
prosecutor offers both prisoners to become a key witness

• if one of them confesses to the bank robbery, he/she is exempted
from punishment

• the other prisoner will be punished with the full force of the law
(10 years imprisonment)

• Problem: both prisoners are offered this possibility and thus both
may be tempted to confess
Since they both pleaded guilty, though, they receive a mitigated
sentence, meaning that both of them have to spend 5 years in
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The prisoner’s dilemma
Analyze of the prisoner’s dilemma with payoff matrix:

!!!!!!!!!!!!!!!!!!

!!!!!! !!!!!!
A

B

cooperate

defect

cooperate defect

−1
−1

−10
0

0
−10

−5
−5

Keeping silent is favorable for both
But: a double confession is the so-called Nash equilibrium:
No agent can improve its payoff by changing its action (each
payoff matrix has at least one Nash equilibrium [Nash, 1950])
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Gen. payoff matrix of the prisoner’s dilemma

!!!!!!!!!!!!!!!!!!

!!!!!! !!!!!!
A

B

cooperate

defect

cooperate defect

R
R

S
T

T
S

P
P

R: Reward for mutual cooperation P: Punishment for mutual defection
T: Temptation to defect S: Sucker’s payoff
• exact values for R, P, T and S are not important
• but it definitely holds T > R > P > S and 2 R > T + S

2. condition not fulfilled ⇒ alternately exploitation should be
preferred
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The prisoner’s dilemma
Many situations in everyday life are analogous to the PD
but: although double defect = Nash equilibrium, other
cooperating actions
Question (accord. to [Axelrod, 1980]):
Under what conditions cooperation emerges in a world of
egoists without any central authority?
Answer from [Hobbes, 1651] (Leviathan):

• Under no conditions whatsoever! Before governmental order
and thus a directing central authority existed, the state of nature
was dominated by egoistic individuals that competed against each
other in such a reckless way that life was „solitary, poor, nasty,
brutish, and short“

• however: on an international level, there is de facto no central
authority but there is a cooperation of countries, though.

Prof. R. Kruse, P. Held EA – ES and Behavioural Simulation 13.05.2013 26 / 34



The prisoner’s dilemma

Approach from [Axelrod, 1980]: iterated prisoner’s dilemma.
(dilemma is performed several times consecutively where all
previous actions of the agents are known)

Idea:
• is the dilemma performed once, it is favorable to choose the nash

equilibrium
• is the dilemma performed several times, one agent can react on the

incoorperative behaviour
(possibility of retaliation)

Questions:
1. Is cooperation created in the iterated prisoner’s dilemma?
2. What is the best strategy in the iterated prisoner’s dilemma?
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The prisoner’s dilemma
[Axelrod, 1980] specified the shown payoff matrix:

!!!!!!!!!!!!!!!!!!

!!!!!! !!!!!!
A

B

cooperate

defect

cooperate defect

3
3

0
5

5
0

1
1

(smallest non-negative integer numbers that satisfy the two conditions)
• Axelrod invited scientists from diverse disciplines (psychology,

social and political sciences, economics, mathematics) to encode
what they believed to be an optimal strategy for the iterated
prisoner’s dilemma with this payoff matrix

• programs were to have access to all games already played
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Turniere
With this framework, Axelrod conducted two tournaments:

1. Tournament:
• 14 Programs and one random player (Fortran)
• competed against each other in a round-robin tournament with

200 matches per pairing
• Winner: A. Rapoport with Tit-for-Tat

program code of all participants of this tournament together with
the payoff results was published
invited to a second tournament
idea: analyzing the results of the first tournament
2. Tournament:

• 62 programs and one random player participated (Fortran und
Basic)

• same tournament conditions
• Winner: A. Rapoport with Tit-for-Tat
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Tit-for-Tat
Strategy of Tit-for-Tat is very simple:

• cooperate in the first game (action: C)
• react in all following games with the move of the opponent’s

previous played game

Please note: tit for tat does not win generally against any other
strategy

• if there are agents in the population with whom it can cooperate,
it can gain an overall advantage

• Problem of Tit-for-Tat: may react inadequately to mistakes —
if two instances of Tit-for-Tat play against each other and one
instance „accidentally“ plays defect, this results i mutual
retaliations

A reasonable alternative is Tit-for-Two-Tat:
strategy starts retaliating only after having been exploited twice
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A Genetic Algorithm Approach
Encoding of the strategies: [Axelrod, 1987]

consider all possible sequences of three consecutive games (6
moves: 26 = 64 possible sequences)
store what move should be played in the next game (C –
cooperate, D – defect, in 1 Bit):

1. game 2. game 3. game
1. Bit: response to (C,C), (C,C), (C,C): C
2. Bit: response to (C,C), (C,C), (C,D): D
3. Bit: response to (C,C), (C,C), (D,C): C
... ... ... ...

64. Bit: response to (D,D), (D,D), (D,D): D
(1. and 2. element of each pair: own resp. opposing move)
6 Bit that encode the course of the game „before“ the first move
each chromosome has 70 binary genes (either C or D)
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Genetic Algorithm: procedure
initial population is created by randomly sampling bit sequences
of length 70
in current population: choose pairs of individuals randomly
pairs play the prisoner’s dilemma 200 times
on the first 3 games: use the stored history of the beginning of
the games to determine the moves
(missing/too short history is filled)
each individual plays against the same number of opponents
(due to limitation on computing power – 1987! – no complete
tournament)
Auswahl von Individuen für nächste Generation:
over-average result ( x ≥ µ + σ): 2 children
average result (µ − σ < x < µ + σ): 1 child
below-average result (µ − σ ≥ x ): no offspring
genetic operators: Bit-Mutation, one-point crossover
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Genetic Algorithm: Result
sich ergebende Strategien sind Tit-for-Tat sehr ähnlich
[Axelrod, 1987] identified the following general patterns:
Don’t rock the boat: Cooperate after three times cooperate
(C,C), (C,C), (C,C) → C
Be provokable: Play defect after a sudden defect of the opponent
(C,C), (C,C), (C,D) → D
Accept an apology: Cooperate after mutual exploitation
(C,C), (C,D), (D,C) → C
Forget: (Do not be resentful:) Cooperate after cooperation has
been restored after one defect (also without retaliation)
(C,C), (C,D), (C,C) → C
Accept a rut:
Play defect after three times defect of the opponent
(D,D), (D,D), (D,D) → D
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The prisoner’s dilemma: Extensions

• in the real world: consequences of actions are not always perfectly
observable

• it may not always be perfectly clear whether last move of
opponent was actually a defect

• more than two agents are involved: Multiple-Agent-Prisoner’s
dilemma

• longer match histories may be considered
• using a random component on the choice of the move:

Probability to choose C or D instead of a clear determined move
• Description of Moore machines or even general programs that are

evolved with the principles of genetic programming
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