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Separation Concepts



Simple Graph
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Simple Graph

A simple graph (or just: graph) is a tuple G = (V,E) where

V = {A1, . . . , An}

represents a finite set of vertices (or nodes) and

E ⊆ (V × V ) \ {(A,A) | A ∈ V }

denotes the set of edges.
It is called simple since there are no self-loops and no multiple edges.



Edge Types
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Let G = (V,E) be a graph. An edge e = (A,B) is
called

directed if (A,B) ∈ E ⇒ (B,A) /∈ E
Notation: A→ B

undirected if (A,B) ∈ E ⇒ (B,A) ∈ E
Notation: A− B or B − A

(Un)directed Graph

A graph with only (un)directed edges is called an
(un)directed graph.

Adjacency Set

Let G = (V,E) be a graph. The set of nodes that
is accessible via a given node A ∈ V is called the
adjacency set of A:

adj(A) = {B ∈ V | (A,B) ∈ E}

A B

C D E

F G

A B

C D E

F G

adj(D)



Paths
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Let G = (V,E) be a graph. A series ρ of r pairwise
different nodes

ρ =
〈
Ai1, . . . , Air

〉

is called a path from Ai to Aj if

Ai1 = Ai, Air = Aj

Aik+1
∈ adj(Aik), 1 ≤ k < r

A path with only undirected edges is called an undi-
rected path

ρ = Ai1 − · · · − Air
whereas a path with only directed edges is referred
to as a directed path

ρ = Ai1 → · · · → Air

A B

C D E

F G

If there is a directed path ρ
from node A to node B in a
directed graph G we write

A 
ρ

G B.

If the path ρ is undirected we
denote this with

A!
ρ

G B.



Graph Types
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Loop

Let G = (V,E) be an undirected graph. A path

ρ = X1 − · · · −Xk
with Xk −X1 ∈ E is called a loop.

Cycle

Let G = (V,E) be a directed graph. A path

ρ = X1 → · · · → Xk

with Xk → X1 ∈ E is called a cycle.

Directed Acyclic Graph (DAG)

A directed graph G = (V,E) is called acyclic if
for every path X1 → · · · → Xk in G the condition
Xk → X1 /∈ E is satisfied, i. e. it contains no cycle.

A B

C D E

F G

Cycle

A B

C D E

F G

Loop



Parents, Children and Families
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Let G = (V,E) be a directed graph. For every node
A ∈ V we define the following sets:

Parents:

parentsG(A) = {B ∈ V | B → A ∈ E}

Children:

childrenG(A) = {B ∈ V | A→ B ∈ E}

Family:

familyG(A) = {A} ∪ parentsG(A)

If the respective graph is clear from the context, the
index G is omitted.

A B

C D

E F G

H J K

L M

parents(F ) = {C,D}
children(F ) = {J,K}
family(F ) = {C,D, F}



Ancestors, Descendants, Non-Descendants
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Let G = (V,E) be a DAG. For every node A ∈ V
we define the following sets:

Ancestors:

ancsG(A) = {B ∈ V | ∃ρ : B  ρG A}

Descendants:

descsG(A) = {B ∈ V | ∃ρ : A ρG B}

Non-Descendants:

non-descsG(A) = V \ {A} \ descsG(A)

If the respective graph is clear from the context, the
index G is omitted.

A B

C D

E F G

H J K

L M

ancs(F ) = {A,B,C,D}
descs(F ) = {J,K, L,M}

non-descs(F ) = {A,B,C,D,E,G,H}



Operations on Graphs
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Let G = (V,E) be a DAG.

The Minimal Ancestral Subgraph of G given
a setM ⊆ V of nodes is the smallest subgraph that
contains all ancestors of all nodes in M .

The Moral Graph of G is the undirected graph
that is obtained by

1. connecting nodes that share a common child
with an arbitrarily directed edge and,

2. converting all directed edges into undirected
ones by dropping the arrow heads.

A B

C D

E F G

H J K

L M

Moral graph of ancestral graph
induced by the set {E,F,G}.



u-Separation
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A B

C D

E

F

G

H

J

X Z Y

Let G = (V,E) be an undirected graph and X, Y, Z ⊆ V three disjoint
subsets of nodes. We agree on the following separation criteria:

1. Z u-separates X from Y — written as

X ⊥⊥G Y | Z,

if every possible path from a node in X to a node in Y is blocked.

2. A path is blocked if it contains one (or more) blocking nodes.

3. A node is a blocking node if it lies in Z.



u-Separation
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A B

C D

E

F

G

H

J

X Z Y

E. g. path A − B − E − G − H is blocked by E ∈ Z. It can be easily
verified, that every path from X to Y is blocked by Z. Hence we have:

{A,B,C,D} ⊥⊥G {G,H, J} | {E,F}



u-Separation
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A B

C D

E

F

G

H

J

X Z Y

Another way to check for u-separation: Remove the nodes in Z from the
graph (and all the edges adjacent to these nodes). X and Y are u-separated
by Z if the remaining graph is disconnected with X and Y in separate
subgraphs.

Node E separates K and B in the directed graph



Example — Qualitative Aspects
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Lecture theatre in winter: Waiting for Mr. K and Mr. B.
Not clear whether there is ice on the roads.

3 variables:

◦ E road condition: dom(E) = {ice,¬ice}
◦ K K had an accident: dom(K) = {yes, no}
◦ B B had an accident: dom(B) = {yes, no}

Ignorance about these states is modelled via the observer’s belief.

E

K B

✻ ✻ ↓ E influences K and B

(the more ice the more accidents)

↑ Knowledge about accident increases belief in ice



Example
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A priori knowledge Evidence Inferences
E unknown B has accident ⇒ E = ice more likely

⇒ K has accident more likely
E = ¬ice B has accident ⇒ no change in belief about E

⇒ no change in belief about accident of K
E unknown K and B dependent
E known K and B independent

E

K B

Node E separates K and B in the directed graph.



Example
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A B

C

Meal quality

A quality of ingredients

B cook’s skill

C meal quality

If C is not known, A and B are independent.

If C is known, then A and B become (conditionally) dependent given C.

A⊥6⊥B | C



Example (cont.)
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A B

C

D

Meal quality

A quality of ingredients

B cook’s skill

C meal quality

D restaurant success

If nothing is known about the restaurant success or meal quality or both, the
cook’s skills and quality of the ingredients are unrelated, that is, independent.

However, if we observe that the restaurant has no success, we can infer that the
meal quality might be bad.

If we further learn that the ingredients quality is high, we will conclude that the
cook’s skills must be low, thus rendering both variables dependent.

A⊥6⊥B | D



d-Separation
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Now: Separation criterion for directed graphs.

We use the same principles as for u-separation. Two modifications are necessary:

Directed paths may lead also in reverse to the arrows.

The blocking node condition is more sophisticated.

Blocking Node (in a directed path)

A node A is blocking if its edge directions along the path

are of type 1 and A ∈ Z, or
are of type 2 and neither A nor one of its descendants is in Z.

serial, head-to-tail

serial, head-to-tail

diverging, tail-to-tail

Type 1

converging, head-to-head

Type 2



d-Separation
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Checking path A→ C → E → G

A C

B D

E

F

G

H

J

X Z = {E}

Y

Checking path A→ C → E ← D:

C is serial and not in Z: non-blocking

E is also serial but in Z: blocking

Path is blocked, no other paths between A and G are available

⇒ A⊥⊥G | E



d-Separation
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A C

B D

E

F

G

H

J

X

Z

Y

Checking path A→ C → E ← D:

C is serial and not in Z: non-blocking

E is converging and in Z: non-blocking

⇒ Path is not blocked

A⊥6⊥D | E



d-Separation
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A C

B D

E

F

G

H

J

X

ZY

Checking path A→ C → E ← D:

C is serial and not in Z: non-blocking

E is converging and not in Z but one of its descendants (J) is in Z:
non-blocking

⇒ Path is not blocked

A⊥6⊥D | J



d-Separation
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A C

B D

E

F

G

H

J

X Z = ∅

Y

Checking path A→ C → E ← D:

C is serial and not in Z: non-blocking

E is converging and not in Z, neither is F,G,H or J : blocking

⇒ Path is blocked

A⊥⊥D | ∅



d-Separation
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A C

B D

E

F

G

H

J

X Z = ∅

Y

Checking path A→ C → E → F → H :

C is serial and not in Z: non-blocking

E is serial and not in Z: non-blocking

F is serial and not in Z: non-blocking

⇒ Path is not blocked

A⊥6⊥H | ∅



d-Separation
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A C

B D

E

F

G

H

J

X

Z

Y = {B,H}

Checking path A→ C → E → F → H :

C is serial and not in Z: non-blocking

E is serial and in Z: blocking

F is serial and not in Z: non-blocking

⇒ Path is blocked



d-Separation
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A C

B D

E

F

G

H

J

X

Z

Y = {B,H}

Checking path A→ C → E ← D → B:

C is serial and not in Z: non-blocking

E is converging and in Z: non-blocking

D is serial and in Z: blocking

⇒ Path is blocked

A⊥⊥H,B | D,E



d-Separation: Alternative Way for Checking
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A C

B D

E

F

G

H

J

X

Z

Y = {B,H}

Steps

Create the minimal ancestral subgraph induced by X ∪ Y ∪ Z.
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A C

B D

E

F H

X

Z

Y = {B,H}

Steps

Create the minimal ancestral subgraph induced by X ∪ Y ∪ Z.
Moralize that subgraph.
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A C

B D

E

F H

X

Z

Y = {B,H}

Steps:

Create the minimal ancestral subgraph induced by X ∪ Y ∪ Z.
Moralize that subgraph.

Check for u-Separation in that undirected graph.

A⊥⊥H,B | D,E


