General (Artificial) Neural Networks

Basic graph theoretic notions

A (directed) **graph** is a pair G = (V, E) consisting of a (finite) set V of **vertices** or **nodes** and a (finite) set $E \subseteq V \times V$ of **edges**.

We call an edge $e = (u, v) \in E$ directed from vertex u to vertex v.

Let G=(V,E) be a (directed) graph and $u\in V$ a vertex. Then the vertices of the set

$$\operatorname{pred}(u) = \{ v \in V \mid (v, u) \in E \}$$

are called the **predecessors** of the vertex u and the vertices of the set

$$\operatorname{succ}(u) = \{v \in V \mid (u,v) \in E\}$$

are called the **successors** of the vertex u.

General definition of a neural network

An (artificial) **neural network** is a (directed) graph G = (U, C), whose vertices $u \in U$ are called **neurons** or **units** and whose edges $c \in C$ are called **connections**.

The set U of vertices is partitioned into

- the set U_{in} of **input neurons**,
- the set U_{out} of **output neurons**, and
- the set U_{hidden} of **hidden neurons**.

It is

$$U = U_{\text{in}} \cup U_{\text{out}} \cup U_{\text{hidden}},$$

$$U_{\text{in}} \neq \emptyset, \qquad U_{\text{out}} \neq \emptyset, \qquad U_{\text{hidden}} \cap (U_{\text{in}} \cup U_{\text{out}}) = \emptyset.$$

Each connection $(v, u) \in C$ possesses a **weight** w_{uv} and each neuron $u \in U$ possesses three (real-valued) state variables:

- the **network input** net_u ,
- the **activation** act_u , and
- the **output** out_u .

Each input neuron $u \in U_{in}$ also possesses a fourth (real-valued) state variable,

• the external input ext_u .

Furthermore, each neuron $u \in U$ possesses three functions:

- the network input function function for the activation function for the output function for the output function for the formula for
- which are used to compute the values of the state variables.

Types of (artificial) neural networks:

- If the graph of a neural network is **acyclic**, it is called a **feed-forward network**.
- If the graph of a neural network contains **cycles** (backward connections), it is called a **recurrent network**.

Representation of the connection weights as a matrix:

$$\begin{pmatrix} u_1 & u_2 & \dots & u_r \\ w_{u_1u_1} & w_{u_1u_2} & \dots & w_{u_1u_r} \\ w_{u_2u_1} & w_{u_2u_2} & & w_{u_2u_r} \\ \vdots & & & \vdots \\ w_{u_ru_1} & w_{u_ru_2} & \dots & w_{u_ru_r} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_r \end{pmatrix}$$

A simple recurrent neural network

Weight matrix of this network

A generalized neuron is a simple numeric processor

$$f_{\text{net}}^{(u)}(\vec{w}_u, \vec{\mathrm{in}}_u) = \sum_{v \in \text{pred}(u)} w_{uv} \text{in}_{uv} = \sum_{v \in \text{pred}(u)} w_{uv} \text{out}_v$$

$$f_{\text{act}}^{(u)}(\text{net}_u, \theta) = \begin{cases} 1, & \text{if } \text{net}_u \ge \theta, \\ 0, & \text{otherwise.} \end{cases}$$

$$f_{\text{out}}^{(u)}(\operatorname{act}_u) = \operatorname{act}_u$$

Updating the activations of the neurons

 u_2 u_3 u_1 0 input phase 1 0 1 $net_{u_3} = -2 < 1$ work phase 0 0 $0 \mid$ 0 0 0 0 0 $net_{u_1} = 0 < 1$ 0 0 0

- Order in which the neurons are updated: $u_3, u_1, u_2, u_3, u_1, u_2, u_3, \ldots$
- Input phase: activations/outputs in the initial state.
- Work phase: activations/outputs of the next neuron to update (bold) are computed from the outputs of the other neurons and the weights/threshold.
- A stable state with a unique output is reached.

Updating the activations of the neurons

	u_1	u_2	u_3		
input phase	1	0	0		
work phase	1	0	0	$net_{u_3} = -2$	< 1
	1	1	0	$\operatorname{net}_{u_2} = 1$	≥ 1
	0	1	0	$\operatorname{net}_{u_1} = 0$	< 1
	0	1	1	$net_{u_3} = 3$	≥ 1
	0	0	1	$\operatorname{net}_{u_2} = 0$	< 1
	1	0	1	$ \operatorname{net}_{u_1} = 4$	≥ 1
	1	0	0	$\operatorname{net}_{u_3} = -2$	< 1

- Order in which the neurons are updated: $u_3, u_2, u_1, u_3, u_2, u_1, u_3, \ldots$
- No stable state is reached (oscillation of output).

Definition of learning tasks for a neural network

A fixed learning task L_{fixed} for a neural network with

- *n* input neurons $U_{\text{in}} = \{u_1, \ldots, u_n\}$ and
- m output neurons $U_{\text{out}} = \{v_1, \ldots, v_m\},$

is a set of **training patterns** $l = (\vec{i}^{(l)}, \vec{o}^{(l)})$, each consisting of

- an input vector $\vec{i}^{(l)} = (\operatorname{ext}_{u_1}^{(l)}, \dots, \operatorname{ext}_{u_n}^{(l)})$ and
- an **output vector** $\vec{o}^{(l)} = (o_{v_1}^{(l)}, \dots, o_{v_m}^{(l)}).$

A fixed learning task is solved, if for all training patterns $l \in L_{\text{fixed}}$ the neural network computes from the external inputs contained in the input vector $\vec{i}^{(l)}$ of a training pattern l the outputs contained in the corresponding output vector $\vec{o}^{(l)}$.

Solving a fixed learning task: Error definition

- Measure how well a neural network solves a given fixed learning task.
- Compute differences between desired and actual outputs.
- Do not sum differences directly in order to avoid errors canceling each other.
- Square has favorable properties for deriving the adaptation rules.

$$e = \sum_{l \in L_{\text{fixed}}} e^{(l)} = \sum_{v \in U_{\text{out}}} e_v = \sum_{l \in L_{\text{fixed}}} \sum_{v \in U_{\text{out}}} e_v^{(l)},$$

where $e_v^{(l)} = \left(o_v^{(l)} - \text{out}_v^{(l)}\right)^2$

Definition of learning tasks for a neural network

A free learning task L_{free} for a neural network with

• *n* input neurons $U_{\text{in}} = \{u_1, \ldots, u_n\},\$

is a set of **training patterns** $l = (\vec{i}^{(l)})$, each consisting of

• an input vector $\vec{i}^{(l)} = (\operatorname{ext}_{u_1}^{(l)}, \dots, \operatorname{ext}_{u_n}^{(l)}).$

Properties:

- There is no desired output for the training patterns.
- Outputs can be chosen freely by the training method.
- Solution idea: Similar inputs should lead to similar outputs. (clustering of input vectors)

Normalization of the input vectors

• Compute expected value and (corrected) standard deviation for each input:

$$\mu_k = \frac{1}{|L|} \sum_{l \in L} \operatorname{ext}_{u_k}^{(l)} \quad \text{and} \quad \sigma_k = \sqrt{\frac{1}{|L| - 1}} \sum_{l \in L} \left(\operatorname{ext}_{u_k}^{(l)} - \mu_k \right)^2,$$

• Normalize the input vectors to expected value 0 and standard deviation 1:

$$\mathrm{ext}_{u_k}^{(l)(\mathrm{new})} = \frac{\mathrm{ext}_{u_k}^{(l)(\mathrm{old})} - \mu_k}{\sigma_k}$$

• Such a normalization avoids unit and scaling problems. It is also known as **z-scaling** or **z-score standardization**.